

	

eCommerce	
 Framework	
 Built	
 to	
 Scale	

Reading	
 Time:	
 10	
 minutes	

Enterprise Edition

Scalability

2

Broadleaf Commerce Scalability
About the Broadleaf Commerce Framework 3	

Test Methodology 4	

Test Results 5	

Test 1: High Transaction Volume 5	

Test 2: Concurrent Users 6	

Test 3: Large Catalogs 7	

Test 4: High Conversion Rates 8	

Performance Considerations and Recommendations 9	

Caching 9	

Session Affinity 10	

Database 10	

Search 11	

CDN 11	

Third Party Integrations 12	

Custom Code 12	

Conclusion 13	

Appendix A – Detailed Test Plan 14	

Appendix B – Hardware Configuration 16	

Appendix C – Database Tuning 17	

Appendix D – Other Configuration Considerations 18	

Appendix E – Sample Tomcat JDBC Configuration 21	

Appendix F – Sample Ehcache Configuration 23	

3

About the Broadleaf Commerce
Framework
An enterprise commerce framework based on best of breed open source technologies

Broadleaf Commerce (Broadleaf) provides companies with a platform for building

high performance commerce solutions. Based on best of breed open source

technologies including the Spring framework, Broadleaf was designed from the

ground up to be extensible and scalable for businesses and institutions requiring a

mission critical eCommerce solution.

Broadleaf is an open source framework that can be used by any developer needing a

commerce solution. Broadleaf’s Community Edition includes basic commerce

features and administrative tools in a modern development framework suitable for

small business needs. Broadleaf Enterprise Edition adds features needed by

enterprise customers along with performance and scalability improvements.

This paper provides details of scalability tests performed with the Broadleaf

Commerce Enterprise Edition. Testing was completed on average equipment (2

core servers with 4 GB RAM) using real world test methodologies. With the ability

to easily scale to hundreds of transactions per second across tens of thousands of

concurrent users and millions of products, the test results speak for themselves.

We would like to thank our friends at Rackspace (www.rackspace.com) for their

contribution of cloud hardware and services for this load test study. Please see

Appendix C for details on the Rackspace configuration used to achieve these results.

4

Test Methodology
Simulating real-world shopping scenarios with industry average conversion rates

Simulating real-world scenarios when testing an e-commerce application is critical

in determining not only how efficiently the software performs under normal

circumstances, but also how many users it can serve during peak demand. Though

difficult to conduct, the test yields the best real world results.

While testing up to a 100% conversion rate to
ensure performance on “Black Friday” and “Cyber
Monday” behavior, most test cases conducted an
average of an 11% add-to-cart action and an
aggregated 3% conversion rate. Furthermore, a
300ms pause time was simulated for each checkout
transaction, indicative of payment processing times.

In all cases, Broadleaf set out to report objective scalability numbers. In isolation, test
cases for “home page views” or “orders” have no merit outside of simulated consumer
behavior. The ability for a system to handle hundreds of millions of views to a single
page without any other variable is a useless statistic in itself. Furthermore, test cases
with varying concurrent user numbers hold no value unless tested against concurrent
user behavior, not just hits to a website.

Testing could only be considered a “pass” if the Broadleaf
framework responded with an average response time less than one
second. Broadleaf detailed test result details (Appendix H) show
specific measures of transactions per second (txns/sec) and actual
response times against comprehensive page-level test details,
server specifications and product catalog sizes.

5

Test Results
Against high traffic, large product catalogs and peak season spikes, Broadleaf
Commerce proves the ability to handle the most stringent scalability situations

Peak demand is defined based on industry, customer base and seasonality. Through

all major peak eCommerce variables, Broadleaf proves the ability to scale. Across

high transaction volume, concurrent users, large catalogs and high conversion rates,

Broadleaf exhibits consistent peak performance.

Test 1: High Transaction Volume

For test purposes, transactions have been defined as web interactions such as “view

product page” or “add to cart,” with a total of 24 pre-defined web interactions

defined in Appendix A. Simulating linear scale as servers are added, Broadleaf easily

handles roughly 30 transactions per second on a single server and 200 transactions

per second in an eight server deployment of the system.

Broadleaf demonstrated horizontal scalability,
handling 200 transactions per second

6

Test 2: Concurrent Users

In order to simulate transactions per second in a real world scenario, Broadleaf

tested tens of thousands of concurrent users across architectural tiers from one to

eight server scenarios. While many scalability studies determine concurrent users

independent of transactions, Broadleaf’s tests used concurrent user counts in order

to prove transactions per second (Test 1), demonstrating realistic online traffic

scenarios.

Broadleaf demonstrated the ability to handle
tens of thousands of concurrent users

For companies needing more simultaneous threads (e.g., companies that want to be

the next Amazon, Facebook, or Twitter), infrastructure build out and serious

application performance tuning can be handled with Broadleaf’s Professional

Services. For most businesses with typical conversion rates, the numbers

demonstrated above can handle sites generating billions of dollars in sales.

7

Test 3: Large Catalogs

For corporations requiring larger catalog sets, Broadleaf tested an online catalog

with 1,000,000 products. While Test 1 and 2 covered a catalog of 10,000 products

in achieving linear scalability, Broadleaf further proved linear scalability using a

catalog of 1,000,000 products, using the same commodity hardware and test cases

across the product catalog sizes.

Broadleaf demonstrated linear performance across
catalogs of 10,000 and 1,000,000 products

While larger catalog sizes predictably have an impact on Broadleaf’s ability to handle

transactions per second, hardware scaling proved to be linear. Broadleaf did not ‘top

out’ or otherwise plateau at any combination of catalog size, concurrent user or

transaction throughput test. For enterprise clients looking for immediate scale or

plenty of room to grow, Broadleaf demonstrates proven proficiency.

8

Test 4: High Conversion Rates

For corporations with increased conversion rates above industry averages, Broadleaf

tested up to 100% conversion in proving, once again, linear scale. While Tests 1

through 3 assumed an industry average conversion rate of 3%, the system was

pushed up to a 100% conversion rate.

With a unit of measure being orders per hour rather than web transactions per

second, a single server instance easily handles 8,750 orders per hour assuming a

50% conversion rate on site traffic, simulating conversion rates retailers see during

an event such as Black Friday. In exploring the total number of orders able to be

processed in an acceptable threshold (under a second), Broadleaf’s two server

configuration handles approximately 43,000 orders per hour, with eight servers

processing approximately 116,000 orders per hour.

Broadleaf demonstrated linear performance across high

conversion rates, easily handling order spikes

9

Performance Considerations and
Recommendations
Best practice infrastructure and general configuration guidance should be followed

Caching

Caching is an important aspect of tuning a Broadleaf Commerce implementation for

performance. Turning on the Thymeleaf cache and tuning the Hibernate Level 2

cache configuration should be considered, as both are beneficial to increasing the

efficiency of the application. The default configuration of Broadleaf Commerce

includes catalog cache configuration with long time-to-live values and large cache

sizes, which should be enabled for optimum performance (explained in Appendix D).

Ehcache is the recommended Hibernate level 2 cache for Broadleaf. It is readily

supported by Hibernate, backed by Terracotta, and can be expanded in a number of

interesting way to help with individual cases. Ehcache can be turned into a

distributed cache, as well as expanded to use “Big Memory.” Big Memory is a

Terracotta product utilizing off-heap memory space to store cache records, which

can help with garbage collection costs normally associated with large in-memory

caches. With large product catalog or inventory caches, Big Memory should be an

architectural consideration.

Finally, it is recommended to configure specific applications with a single,

standalone Hibernate level 2 cache per node, rather than distributed cache.

Distributed caches tend to be overly chatty over the network and are generally

slower. For the same result, a JMS queue approach that is notified of any cache

eviction event is recommended. Every node listens to the queue and can handle its

individual cache grooming, assuming the requirement is only near real-time updates

of cache (correct in most cases).

10

Session Affinity

The recommended configuration for Broadleaf Commerce is to enable session

affinity so that once a conversation has started with a user, the user will be sent back

to the same node for each subsequent request while the session is still active.

Centralized session solutions that attempt to store all user state in one location,

while flexible, are slower because user state must be constantly pushed to the central

location. In addition, the effectiveness of the Hibernate level 2 cache for Customer

and Order is negated when the user does not return to the same server during the

session.

Database

Broadleaf Commerce can be used with a variety of database platforms. The

scalability tests described in this paper were executed using a MySQL database.

Broadleaf supports open source databases including MySQL and Postgres.

Supported commercial databases include Oracle and Microsoft SQLServer. Tuning

any database to be able to handle expected demand is an important step in readying

a Broadleaf Commerce implementation for production. Configuring max

connections and table buffers are required, in addition to other vendor specific

tweaks. Appendix D contains specific tuning notes for MySQL that were used in this

test. Consult specific vendor documentation for more information on database

tuning and configuration.

11

Search

Broadleaf Commerce uses Solr as its search engine. By default, Solr is configured to

run as an embedded server. This serves well for smaller catalogs, since the memory

and cpu requirements are small. And with the embedded server, there is no HTTP

connection overhead, so overall it runs quite fast. At larger product catalog sizes

(30,000+), we recommend configuring your Broadleaf Commerce implementation

to refer to an external, standalone Solr instance (or cluster). Otherwise, the memory

and CPU requirements are disruptive to the overall application performance.

CDN

The load test did not retrieve graphics or other static assets from the application

container, nor did it engage the built-in asset server for any managed asset retrieval.

Most high volume sites will benefit from having static assets, including images,

JavaScript, and other media, be delivered to users via a CDN (Content Delivery

Network). CDN solutions offer hi-speed nodes located across the world with

delivery of your assets coming from the nodes closest to a given user. This serves to

reduce response times for your application and lessens unecessary load on your

application container. Rackspace offers an easy-to-use CDN for such purposes.

12

Third Party Integrations

The load test accounted for a simple, third party integration during the submit order

process by including an arbitrary 300ms wait time to represent a call to a payment

processor.

Typical enterprise eCommerce systems can contain ten or more integrations. Each

integration has the potential to negatively affect the scalability of the system. It is

important to use best practices for integrating with other systems to ensure that one

poorly performing third party integration does not bring down the entire system.

Custom Code

The Broadleaf Framework is highly extensible. The customizations made for each

implementation will require additional resources (e.g., CPU and Database).

The specific implementation may use the system in a way that differs from the

scalability tests as we designed them.

It is recommended that all medium to large businesses utilizing Broadleaf

Commerce execute their own scalability and performance tests.

13

Conclusion
The Broadleaf Commerce framework scales linear across all testing metrics to meet
the needs of even the most demanding eCommerce sites

Well known retailers and businesses depend on Broadleaf Commerce to power their

eCommerce solutions, as Broadleaf provides best-in-class eCommerce capabilities at

the highest value. Broadleaf proved real business use cases across multiple

scenarios, demonstrating:

• Hundreds of transactions per second

• Tens of thousands of concurrent users

• Millions of products

• Billions of dollars worth of sales

Furthermore, the provided test results demonstrate that Broadleaf Commerce scales

horizontally by adding additional servers. This type of scaling is ideal for cloud

based and virtualized environments. The tests showed scalable results for systems

utilizing between one and eight application servers that had catalog sizes ranging

from 10,000 items to 1,000,000 items.

Broadleaf’s Enterprise Edition meets the scalability needs of the large majority of

companies utilizing commodity hardware, providing by far the best overall value

among enterprise eCommerce solutions.

For more information on Broadleaf, please visit: www.broadleafcommerce.com

For more information on Rackspace, please visit: www.rackspace.com

14

Appendix A – Detailed Test Plan
The data below provides a detailed list of the flows that constituted the test plan

URLs and Percentage Weighting1 for Standard Ecommerce Test

1. Home Page – 100%

2. Category Page Browse – 98%

3. Search Page – 60%

4. Product Page Browser – 98%

5. Product Page Add To Cart – 11%

6. Add To Cart Page Without Product Options – N/A

7. Add To Cart Page With Product Options – N/A

8. View Cart Page – 5.4%

9. Start Checkout Page – 5.4%

10. Anonymous Checkout page - 3%

11. Registered Customer Login Page – 2.4%

12. Registered Customer Login Submission Page – 2.4%

13. Shipping Option Page – 4.7%

14. Address Information Entry Page – 4.7%

15. Pay Using Credit Card and Complete Checkout Page – 3%

URLs for Order Test
16. Product Page Add To Cart

17. Add To Cart Page Without Product Options

18. Add To Cart Page With Product Options

19. View Cart Page

20. Start Checkout Page

a. Anonymous Checkout page

b. Registered Customer Login Page

21. Registered Customer Login Submission Page

22. Shipping Option Page

23. Address Information Entry Page

24. Pay Using Credit Card and Complete Checkout Page

	

15

All tests were run on the Broadleaf Commerce Heat Clinic demonstration

application using Broadleaf Commerce Enterprise Edition version 2.2.1. See

Appendix B for hardware configurations.

Notes

1. The system added an artificial payment processor latency of 300 ms during the submit order step

2. The test environment was put through a brief warm-up period before starting to capture metrics.

Each test was run until throughput stabilization was achieved.

3. Throughput is represented as samples per second. Order throughput is measured as orders per hour.

4. JMeter was used to generate virtual user load in Master/Slave configuration to maximize virtual user

efficiency.

5. Catalog data at 10,000 and 100,000 and 1,000,000 sizes was generated artificially using data

generation software.

6. SSL termination was utilized at the load balancer. This configuration would normally be

inappropriate for a cloud installation of Broadleaf Commerce because of security concerns, but is

suitable for our wider goal of load testing.

7. A load test is considered successful when aggregate response times for all pages register near or under

1 second for 90% of requests.

16

Appendix B – Hardware
Configuration
Broadleaf’s Rackspace deployment used Ubuntu 12.0.4 LTS as the operating system
with the minimum configuration tested being 4GB Ram with 2 cores

Web Servers

• Apache 2.0 (4 GB RAM, 2 Cores)

Application Servers

• Tomcat 7.0 (4 GB RAM, 2 Cores)

Search Server

• Solr 4.0 (4 GB RAM, 2 Cores)

Database Server

• MySQL 5.5 (30 GB RAM, 8 Cores)

Client Test Machines

• JMeter 2.8 Master (2GB RAM, 2 Cores)

• JMeter 2.8 Slave (2GB RAM, 2 Cores)

Notes

1. Configured in the Rackspace Cloud Control Panel

2. SSL terminated at the load balancer

 3. Rackspace offers a more scalable version of MySQL in the form of their Cloud Database product,

 though due to testing specifics, Broadleaf used a single MySQL installation of a standard cloud server

Apache2
Web Server

Cloud
LoadBalancer

Apache2
Web Server

MySql

Tomcat7
App Containers

JMeter
Slave Clients

JMeter
Master Client

Solr Search
Server

17

Appendix C – Database Tuning
Specific MySQL tuning changes were made for Broadleaf’s load test

When using MySQL, Broadleaf Commerce depends on the use of the InnoDB table

type. There are several configurations for MySQL and InnoDB that can be made to

optimize performance at the database layer. MySQL configuration changes are

enacted by editing MySQL’s my.cnf file.

Variable Value Notes

thread_cache_size Should be equal to or greater than the

max_used_connections status variable

Amount of threads MySql keeps in

cache to serve connections

max_connections Should be high enough to handle peak load Maximum number of connections

MySql will allow

thread_concurrency Should be between 2 to 4 times the number of

cores

Test benchmark to determine the

best value

table_cache 1024 Number of tables MySql will cache

innodb_buffer_pool_size 80% of available RAM Data and index cache

innodb_thread_concurrency At least 8, even on 1 core. Calculate as (2 *

core count) + 2.

Regulate the count of threads

working inside InnoDB

innodb_flush_method O_DIRECT Prevents double buffering of MySql

cache by the OS

innodb_log_buffer_size 4M Reduce log flush frequency

innodb_file_per_table This is an option and has no value Prevent single tablespace bloat

query_cache_size 64M Cache common queries

query_cache_limit 2M Limit the size of a query MySql will

cache

18

Appendix D – Other
Configuration Considerations
Specific configuration settings were used for Apache, Tomcat, and Broadleaf

Apache Web Server

Apache is very efficient at serving content and routing connections to your app

container. However, it should still be configured to handle your target connection

count. Test benchmarking will provide an indication of how many total connections

and how many separate Apache web server installations you will need.

On a standard Apache2 installation on Ubuntu 12.0.4 LTS, Apache is installed in

worker mpm mode. The snippet below in apache2.conf changes the max number of

clients Apache will handle to 800.

…

<IfModule mpm_worker_module>

 StartServers 16

 MinSpareThreads 25

 MaxSpareThreads 75

 ThreadLimit 64

 ThreadsPerChild 25

 ServerLimit 32

 MaxClients 800

 MaxRequestsPerChild 0

</IfModule>

…

19

Tomcat Application Container

Tomcat will also need to be configured to handle a target connection count as

follows:

1. Set the maxThreads attribute on the connector in use in server.xml to the max number of concurrent

requests for the instance to be able to handle. 500 is a good value for a Tomcat on a 2-core server.

2. Set the max heap size for Tomcat to between 1.2 GB and 2.5 GB. Perm gen size to 256M. If using the

asset server with a lot of image effects, or if using the embedded Solr server with a large catalog, more

heap may be required.

3. A good value for the container connection pool max connection count is 100.

4. Use Tomcat 7’s jdbc connection pool. It is faster and more reliable than other Java connection pools at

the moment. See Appendix F for a sample connection pool configuration for Broadleaf Commerce.

20

Broadleaf Commerce Implementation

Each implementation will also need to be configured to take advantage of Hibernate

level 2 cache and Thymeleaf cache (Optional – if using Thymeleaf for the

presentation layer). Enable these beans in the implementation’s application context

xml file. See Appendix F for a sample bl-override-ehcache.xml configuration.

<bean id="blWebTemplateResolver"

class="org.thymeleaf.templateresolver.ServletContextTemplateResolver">

 <property name="prefix" value="/WEB-INF/templates/" />

 <property name="suffix" value=".html" />

 <property name="templateMode" value="HTML5" />

 <property name="cacheable" value="true"/>

 <property name="characterEncoding" value="UTF-8" />

 </bean>

 <bean id="blEmailTemplateResolver"

class="org.thymeleaf.templateresolver.ClassLoaderTemplateResolver">

 <property name="prefix" value="emailTemplates/" />

 <property name="suffix" value=".html" />

 <property name="templateMode" value="HTML5" />

 <property name="cacheable" value="true"/>

 <property name="characterEncoding" value="UTF-8" />

 </bean>

<bean id="blMergedCacheConfigLocations"

class="org.springframework.beans.factory.config.ListFactoryBean">

 <property name="sourceList">

 <list>

 <value>classpath:bl-override-ehcache.xml</value>

 </list>

 </property>

 </bean>

21

Appendix E – Sample Tomcat
JDBC Configuration
Tomcat JDBC configuration was added to context.xml packaged with Broadleaf

<?xml version="1.0" encoding="UTF-8"?>

<Context>

 <Resource name="jdbc/web"

 auth="Container"

 type="javax.sql.DataSource"

 factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"

 testWhileIdle="true"

 testOnBorrow="true"

 testOnReturn="false"

 validationQuery="SELECT 1"

 timeBetweenEvictionRunsMillis="30000"

 maxActive="100"

 maxIdle="10"

 minIdle="5"

 removeAbandonedTimeout="60"

 removeAbandoned="false"

 logAbandoned="true"

 minEvictableIdleTimeMillis="30000"

 jdbcInterceptors =

"org.apache.tomcat.jdbc.pool.interceptor.ConnectionState;org.apache.tomcat.jdbc.

pool.interceptor.StatementFinalizer"

 username="${database.user}"

 password="${database.password}"

 driverClassName="${database.driver}"

 url="${database.url}"/>

 <Resource name="jdbc/storage"

 auth="Container"

 type="javax.sql.DataSource"

 factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"

 testWhileIdle="true"

 testOnBorrow="true"

 testOnReturn="false"

 validationQuery="SELECT 1"

22

 timeBetweenEvictionRunsMillis="30000"

 maxActive="15"

 maxIdle="10"

 minIdle="5"

 removeAbandonedTimeout="60"

 removeAbandoned="false"

 logAbandoned="true"

 minEvictableIdleTimeMillis="30000"

 jdbcInterceptors =

"org.apache.tomcat.jdbc.pool.interceptor.ConnectionState;org.apache.tomcat.jdbc.

pool.interceptor.StatementFinalizer"

 username="${database.user}"

 password="${database.password}"

 driverClassName="${database.driver}"

 url="${database.url}"/>

 <Resource name="jdbc/secure"

 auth="Container"

 type="javax.sql.DataSource"

 factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"

 testWhileIdle="true"

 testOnBorrow="true"

 testOnReturn="false"

 validationQuery="SELECT 1"

 timeBetweenEvictionRunsMillis="30000"

 maxActive="15"

 maxIdle="10"

 minIdle="5"

 removeAbandonedTimeout="60"

 removeAbandoned="false"

 logAbandoned="true"

 minEvictableIdleTimeMillis="30000"

 jdbcInterceptors =

"org.apache.tomcat.jdbc.pool.interceptor.ConnectionState;org.apache.tomcat.jdbc.

pool.interceptor.StatementFinalizer"

 username="${database.user}"

 password="${database.password}"

 driverClassName="${database.driver}"

 url="${database.url}"/>

</Context>

23

Appendix F – Sample Ehcache
Configuration
Adjusting the built-in Ehcache XML best fits individual catalog size and preferences

This configuration in bl-override-ehcache.xml that is packaged with the Broadleaf

application will increase the size of the cache that holds catalog items. Adjust

according to each catalog size and preferences. Note, this configuration also assumes

that the cache is eternal and items are evicted from cache via another mechanism

(e.g. Nightly job or JMS queue listener). Set eternal to false and add time-to-live

values for regular cache timeout needs.

<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <cache

 name="blStandardElements"

 maxElementsInMemory="1000000"

 eternal="false"

 timeToLiveSeconds="3600"

 overflowToDisk="true"

 statistics="true">

 <cacheEventListenerFactory

class="org.broadleafcommerce.common.cache.engine.HydratedCacheEventListenerFacto

ry"/>

 </cache>

</ehcache>

